- News -

New brainstem changes identified in Parkinson’s disease

A pioneering study has found that patients with Parkinson’s disease have more errors in the mitochondrial DNA within the brainstem, leading to increased cell death in that area.

Experts at Newcastle and Sussex universities also revealed that surviving brain cells in the brainstem have more copies of mitochondrial DNA and this has not been identified before.

The study’s deeper understanding into Parkinson’s disease suggests a new target for therapies for patients with the debilitating condition.

Researchers say their findings, published in Annals of Neurology, are “surprising” as the results differ from what has been seen in studies of brain regions that harbor other brain cell-types.

Dr Joanna Elson, a mitochondrial geneticist at Newcastle University, said: “Our study is a major step forwards in gaining an enhanced insight into the serious condition.

“Only by understanding the complexities of what happens in specific cell-types found in specific areas of the brain during this disease can targeted treatments for Parkinson’s disease be produced.”

Changes in cell DNA

Research shows that in Parkinson’s disease a brainstem region called the pedunculopontine nucleus (PPN) develops changes in DNA found in mitochondria - the batteries of the cell - as they produce and store energy that cells can use.

This study looked at cholinergic neurons that are responsible for producing the brain chemical acetylcholine, which is released by cholinergic nerve cells to send signals from one neuron to another.

Death of these cells in the PPN is believed to be the cause of some of the symptoms of Parkinson’s disease, such as problems with attention, walking and posture.

Identifying changes in the mitochondrial DNA in PPN cholinergic neurons has the potential to allow the development of more effective treatments targeted to specific cell-types.

The PPN is an understudied part of the brain and researchers used post-mortem tissue from the Newcastle Brain Tissue Resource, based at Newcastle University, to isolate single neurons for in-depth analysis.

To read the full article please visit the Newcastle University website.

Published on 4th January 2018

Discussion

Avatar
Add a comment

Loading...